

University of Tikrit College Of Pharmacy

General Inorganic and Analytical Chemistry

First Year Students Practical Part 1 And 2

By Prof. Subhi A. Al-Jibori And Dr. Sermed B. Dikram

Demonstration of Some Laboratory Equipments.

Group Separation and Identification of the Cations

Group I Cations (The Silver Group) Ag⁺, pb²⁺ and Hg₂²⁺ ions

Reactions of the lead ion, pb²⁺:

1. With dilute HCl

White precipitate of pbCl₂ is formed.

 $pb (NO_3)_2 + 2HCl \longrightarrow pbCl_2 \downarrow + 2HNO_3$

(white)

or $pb^{2+} + 2Cl^- \longrightarrow pbCl_2 \bigvee$

 $pbCl_2$ is soluble in hot water, but separates out again in needles when the solution is cooled.

2. With KI solution

0

Yellow precipitate of pbI₂ is formed.

 $pb(NO_3)_2 + 2KI \longrightarrow pbI_2 \downarrow + 2KNO_3$ (yellow)

 pbI_2 is soluble in excess of KI solution forming a complex ion. $pbI_2 + 2KI \iff K_2 [pbI_4]$

3. With dilute H_2SO_4

White precipitate of pbSO₄ is formed.

 $pb (NO_3)_2 + H_2SO_4 \longrightarrow pbSO_4 \checkmark + 2HNO_3$ (white)

 $pbSO_4$ is soluble in a concentrated solution of ammonium acetate. $pbSO_4 + 2NH_4.C_2H_3O_2 \longrightarrow pb(C_2H_3O_2)_2 + (NH_4)_2 SO_4$ soluble

4. With K_2CrO_4 solution

Yellow precipitate of pbCrO₄ is formed.

 $pb (NO_3)_2 + K_2CrO_4 \longrightarrow pbCrO_4 + 2KNO_3$ (yellow)

 $pbCrO_4$ is soluble in acetic acid and in ammonia solution, but soluble in alkali hydroxides and in nitric acid.

 $pbCrO_4 + 4NaOH \longrightarrow Na_2 [pbO_2] + Na_2CrO_4 + 2H_2O$ sodium plumbite

 $pbCrO_4 + H_3O^+ \longrightarrow pb^{2+} + HCrO_4 + 2H_2O$

5. With sulphide ion solution (use H₂S)

Black precipitate of pbS is formed.

 $pb (NO_3)_2 + H_2S \longrightarrow pbS \downarrow + 2HNO_3$ (black)

pbS is soluble in hot dilute HNO_3 .

 $3pbS + 8HNO_3 \longrightarrow 3pb(NO_3)_2 + 2NO + 4H_2O + 3S$ <u>Note</u>: H_2S is evolved from thioacidamide. Which is hydrolyzed rapidly in acidified aqueous solution (dil HCl) and librate H_2S after heating the mixture in a water bath.

3

$$CH_3 - C - NH_2 + H_2O \longrightarrow CH_3 - C - NH_2 + H_2S^{\uparrow}$$

6. With NaOH solution

White precipitate of $pb(OH)_2$ is formed.

 $pb (NO_3)_2 + 2NaOH \longrightarrow pb(OH)_2 \checkmark + 2NaNO_3$ (white)

 $pb(OH)_2$ is soluble in excess of the reagent.

 $pb(OH)_2 + 2NaOH \longrightarrow Na_2 [pbO_2] + 2H_2O$

<u>Reactions of the mercurous ion, Hg_2^{2+} :</u>

1. With dilute HCl

White precipitate of Hg₂Cl₂ (Calomel) is formed.

 $Hg_{2}(NO_{3})_{2} + 2HC1 \longrightarrow Hg_{2}Cl_{2} \checkmark + 2HNO_{3}$ (white)

 Hg_2Cl_2 is insoluble in hot water, but soluble in aqua regia (1ml of concentration $HNO_3 + 3ml$ of concentration HCl).

 $HNO_{3} + 3HC1 \longrightarrow NOC1 + 2C1 + 2H_{2}O$ $Hg_{2}Cl_{2} + 2C1 \longrightarrow 2HgCl_{2}$ soluble

Hg₂Cl₂ turns to a black mixture when treated with aqueous ammonia.

 $Hg_{2}Cl_{2} + 2NH_{3} \longrightarrow Hg(NH_{2})Cl \checkmark + Hg \checkmark + NH_{4}Cl$ (white) (black)

2. With KI solution

Yellowish-green precipitate of Hg_2I_2 is formed. $Hg_2(NO_3)_2 + 2KI \longrightarrow Hg_2I_2 \checkmark + 2KNO_3$ (yellowish-green)

 Hg_2I_2 is soluble in excess of KI solution.

 $Hg_2I_2 + 2KI \longleftarrow K_2 [HgI_4] + Hg$

Potassium mercuri-iodide

3. With K_2CrO_4 solution

Brown a morphous precipitate of Hg_2CrO_4 is formed, which is converted into a red crystalline form on boiling.

 $Hg_{2} (NO_{3})_{2} + K_{2}CrO_{4} + 2KNO_{3}$ (brown)

4. With NaOH solution

Black precipitate of Hg₂O is formed.

 $Hg_2(NO_3)_2 + 2NaOH \longrightarrow Hg_2O \downarrow + 2NaNO_3 + H_2O$ (black)

5. With ammonia solution

Finely-divided black precipitate of Hg is formed.

$$2Hg_2(NO_3)_2 + 4NH_3 + H_2O \longrightarrow O NH_2.NO_3 + 2Hg + 2NH_4NO_3$$

Hg (black)

6. With $SnCl_2$ solution

Finely-divided black precipitate of Hg is formed with excess of the reagent.

 $Hg_{2}(NO_{3})_{2} + SnCl_{2} + 2HCl \longrightarrow 2Hg \checkmark + SnCl_{4} + 2HNO_{3}$ (black)

Reactions of the Silver ion, Ag⁺:

1. With dilute HCl

White precipitate of AgCl is formed.

 $AgNO_3 + HCl \longrightarrow AgCl + HNO_3$ (white)

AgCl is insoluble in dilute HNO₃, but is soluble in aqueous ammonia owing to the formation of the silver diammino complex

ion, Ag(NH₃)₂⁺

 $AgCl + 2NH_3 \longrightarrow Ag(NH_3)_2Cl$

AgCl is precipitated again from the ammonical solution by the addition of dilute HNO₃

 $Ag(NH_3)_2Cl + 2HNO_3$ AgCl $\downarrow + 2NH_4NO_3$

2. With KI solution

Yellow precipitate of AgI is formed.

$$AgNO_3 + KI \longrightarrow AgI + KNO_3$$

(yellow)

AgI is insoluble in concentrated ammonia solution, but is soluble in solutions of KCN or $Na_2S_2O_3$

AgI + KCN
$$\leftarrow$$
 K[Ag (CN)2] + KIAgI + 2 Na2S2O3 \leftarrow Na3[Ag (S2O3)2] + NaISodium thiosulphate \sim Sodium thiosulphate

3. With K_2CrO_4 solution

Red precipitate of Ag_2CrO_4 is formed.

 $2AgNO_3 + K_2CrO_4 \longrightarrow Ag_2CrO_4 \downarrow + 2KNO_3$ (red)

4. With NaOH solution

Brown precipitate of Ag₂O is formed.

 $2AgNO_3 + NaOH \longrightarrow Ag_2OV + 2NaNO_3 + H_2O$ (brown)

5. With ammonia solution

White precipitate at first, which quickly passes into brown Ag_2O Ag_2O is soluble in excess of the reagent.

 $Ag_2O + 4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]OH$

Analysis of the silver group (group 1)

7

Separation and identification of Group I cations

To the given solution in a test tube add dilute HCl in excess and filter. Wash the ppt., which may contain pbCl₂, AgCl and Hg₂Cl₂ with a little very dilute HCl.

8

Group II cations

 The copper group (group II A) Hg²⁺, Bi³⁺, Cu²⁺ and Cd²⁺ ions.
 The Arsenic group (group II B)

The Copper Group II A

Reactions of the mercuric ion, Hg²⁺

1. With sulphide ion (use H_2S)

Black precipitate of HgS is formed.

 $HgCl_{2} + 2H_{2}S \longrightarrow Hg_{3}S_{2}Cl_{2} + 4HCl$ $Hg_{3}S_{2}Cl_{2} + H_{2}S \longrightarrow 2HCl + 3HgS \checkmark$

(black)

the net result is HgCl₂ + H₂S \longrightarrow HgS \downarrow + 2HCl

HgS is soluble in aqua regia.

 $3HgS + 2HNO_3 + 6HCl \longrightarrow 3HgCl_2 + 2NO + 3S + 4H_2O$

2. With SnCl₂ solution

White precipitate of HgCl₂ is formed.

 $2\text{HgCl}_2 + \text{SnCl}_2 \longrightarrow \text{SnCl}_4 + \text{Hg}_2\text{Cl}_2 \bigvee$ (white)

 Hg_2Cl_2 is reduced by the excess of the reagent to grey-black metallic mercury (after 5 minutes).

 $Hg_2Cl_2 + SnCl_2 \implies SnCl_4 + 2Hg \downarrow$ (black)

3. With NaOH solution

Reddish-brown precipitate is formed initially converted to yellow precipitate of HgO.

 $HgCl_2 + 2NaOH \longrightarrow HgO + 2NaCl + H_2O$ (yellow)

4. With ammonia solution

White precipitate of Hg(NH₂)Cl is formed. HgCl₂ + 2NH₃ \longrightarrow Hg(NH₂)Cl \downarrow + NH₄Cl (white)

 $Hg(NH_2)Cl$ is soluble in a large excess of the reagent.

5. With KI solution

Red precipitate of HgI₂ is formed.

 $HgCl_2 + 2KI \longrightarrow HgI_2 \downarrow + 2KCl$ (red)

HgI₂ is soluble in excess of the reagent.

 $HgI_2 + 2KI \longleftarrow K_2 [HgI_4]$

Reactions of the Bismuth ion, Bi³⁺

1. With sulphide ion (use H₂S)

0

Brown precipitate of Bi₂S₃ is formed.

 $Bi(NO_3)_3 + 3H_2S \longrightarrow Bi_2S_3 + 6HNO_3$ (brown)

 Bi_2S_3 is insoluble in cold dilute acids, but soluble in hot dilute HNO₃ and in boiling concentrated HCl

 $Bi_2S_3 + 2NO_3 + 8H_3O^+ \longrightarrow 2Bi^{3+} + 2NO + 3S + 12H_2O$

2. With NaOH solution

White precipitate of Bi(OH)₃ is formed.

 $Bi(NO_3)_3 + 2NaOH \longrightarrow Bi(OH)_3 \downarrow + 3NaNO_3$ (white)

Bi(OH)₃ becomes yellow on boiling, due to dehydration.

 $Bi(OH)_3 \longrightarrow BiO.OH \downarrow + H_2O$ (yellow)

3. With ammonia solution

Deep blue solution of $(OH)_3$ is formed.

$$Bi(NO_3)_3 + 3NH_4OH \longrightarrow Bi(OH)_3 \downarrow + 3NH_4NO_3$$
(white)

Bi(OH)₃ is insoluble in excess of the reagent.

4. With KI solution

Dark brown precipitate of Bil₃ is formed.

 $Bi(NO_3)_3 + 3KI \longrightarrow BiI_3 \downarrow + 3KNO_3$ (brown)

BiI₃ is soluble in excess of the reagent to give a yellow solution of $K[BiI_4]$.

 $BiI_3 + KI \longrightarrow K[BiI_4]$

K[BiI₄] is decomposed upon dilution giving an orange–coloured precipitate of (BiO)I.

 $BiI_3 + H_2O \longrightarrow 2HI + (BiO)I$

5. With sodium stannite solution

Black precipitate of finely divided Bi is formed.

Sodium stannite Na₂[SnO₂] is freshly prepared by adding 3M NaOH solution drop by drop to a solution of stannous chloride

until the initial white precipitate of Sn(OH)₂ just dissolves.

 $Sn(OH)_{2} + 2NaOH \implies Na_{2}[SnO_{2}] + 2H_{2}O$ $2Bi(NO_{3})_{3} + 6NaOH + 3Na_{2}[SnO_{2}] \implies$ $2Bi + 3Na_{2}[SnO_{3}] + 6NaNO_{3} + 3H_{2}O$ (black)

Reactions of the Cupric ion, Cu²⁺

1. With sulphide ion (use H_2S)

Black precipitate of CuS is formed.

 $CuSO_4 + H_2S \longrightarrow CuS + H_2SO_4$ (black)

CuS is insoluble in NaOH solution, but is soluble in hot dilute HNO₃ and in KCN solution.

 $3CuS + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 3S + 4H_2O + 2NO$

2. With NaOH solution

Blue precipitate of Cu(OH)₂ is formed.

 $CuSO_4 + 2NaOH \leftarrow Cu(OH)_2 \downarrow + Na_2SO_4$ (blue)

Cu(OH)₂ is converted on boiling into black precipitate of CuO.

 $Cu(OH)_2 \longrightarrow CuO + H_2O$ (black)

3. With ammonia solution

Deep blue solution of $[Cu(NH_3)_4]SO_4$ is formed.

 $2CuSO_4 + 8NH_3 + 2H_2O \longrightarrow 2[Cu(NH_3)_4]SO_4 + 2H_2O$

4. With potassium ferrocyanide K₄[Fe(CN)₆] solution

Reddish-brown precipitate of $Cu_2[Fe(CN)_6]$ is formed. $CuSO_4 + K_4[Fe(CN)_6] \longrightarrow Cu_2[Fe(CN)_6] \checkmark + 2K_2SO_4$ (reddish-brown)

 $Cu_2[Fe(CN)_6]$ is insoluble in dilute acids, but dissolves in aqueous ammonia forming a blue solution.

5. With KI solution

Yellowish-brown mixture of Cu_2I_2 (white) and I_2 (yellowishbrown) precipitate is formed.

 $2CuSO_4 + 4KI \qquad \longleftarrow \qquad Cu_2I_2 \bigvee + I_2 \bigvee + 2K_2SO_4 \\ (white) \qquad (yellowish-brown)$

Reactions of the Cadmium ion, Cd²⁺

1. With sulphide ion (use H_2S)

Yellow precipitate of CdS is formed in a neutral or a slightly acidic solution.

 $CdSO_4 + H_2S \longrightarrow CdS + H_2SO_4$ (yellow)

CdS is insoluble in KCN solution, but is soluble in hot dilute nitric acid.

2. With NaOH solution

White precipitate of Cd(OH)₂ is formed.

 $CdSO_4 + 2NaOH \longrightarrow Cd(OH)_2 \downarrow + Na_2SO_4$ (white)

 $Cd(OH)_2$ is insoluble in excess of the reagent.

3. With ammonia solution

3

White precipitate of $Cd(OH)_2$ is formed. $CdSO_4 + 2NH_3 + 2H_2O \longrightarrow Cd(OH)_2 \downarrow^+ (NH_4)_2SO_4$ (white)

 $Cd(OH)_2$ is soluble in excess of the reagent due to the formation of $[Cd(NH_3)_4]SO_4$.

 $Cd(OH)_2 + (NH_4)_2SO_4 + 2NH_3$

اهمد الحاج ماجد العبدربه ترطاسية - طباعة - استنساح - رونيو سامراء - القاطول - ٧٢٠٧٣٦