Paper and Thin Layer Chromatography

Thin Layer Chromatography

Thin Layer Chromatography

- Stationary phase = a piece of glass, metal, or plastic coated with a thin, uniform layer of a solid adsorbent.
 - Usually silica gel (SiO₂), alumina (Al₂O₃), or cellulose
 - A substance which fluoresces under UV light often incorporated into the stationary phase.
 - Zinc sulfide
- Mobile phase = suitable liquid solvent or mixture of solvents.

• Step 1: Preparing the chamber

- A) Choose a containerthat is large enoughand can be sealed.
- B) Add the a few cmof the mobile phasesolvent to the chamber.

Step 1: Preparing the chamber

- C) Seal the chamber and allow it to overnight if possible.
 - The atmosphere of the chamber should be saturated with the solvent vapors before running samples.
 - You may line part of the inside of chamber with filter paper to this saturation process.
 - Stops the solvent from evaporating as it rises up the stationary phase plate.
 - Allows for better development of chromatograms.

- Step 2: Preparing the stationary phase
- A) Prepare the TLC plate:
- Mix:
 - Adsorbent
 - Small amount of an inert binder
 - Water
- Spread a thin layer (no more than a few mm) of the mixture on an nonreactive support.
- After the plate is dried, it is activated by heating in an oven for approximately 30 minutes at 110°C.

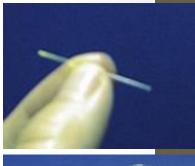
Step 2: Preparing the stationary phase

- -TLC plates are commercially can
 - ready for use.
- B) pointed base line

• Step 3: Spotting the samples

A) If the sample isn't in solution, dissolve it in an appropriate solvent.

 As a rule of thumb, a (1g in 100ml) is good. concentration of about 1%

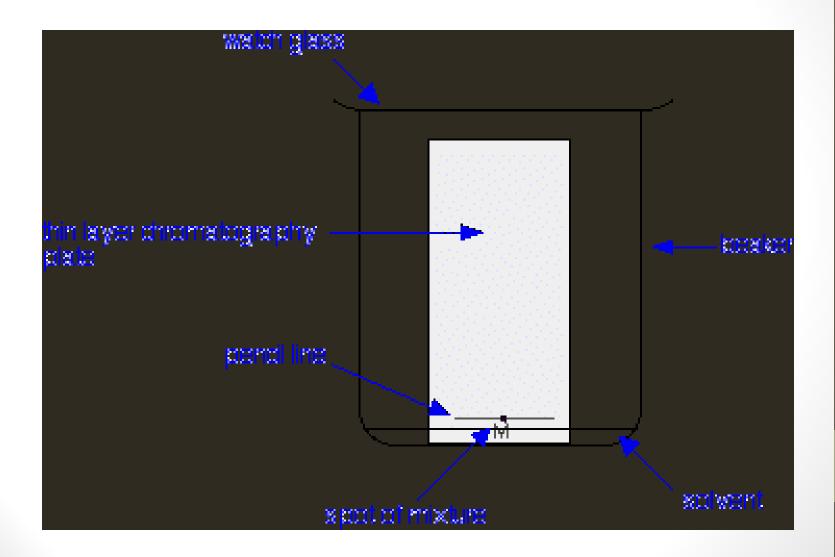


The image above shows a sample ran at three different concentrations. The left plate was ran too concentration and the spots are running together. The other two plates yielded good separation.

• Step 3: Spotting the samples

B) Spot a small amount of sample onto the plate.

• Make sure the sample spot is before continuing.



• Step 4: Developing the chromatograms

- When the sample spot has dried, the TLC plate is placed into the chamber containing the solvent.
- It is important that the sample spot is above the level of the solvent.

TLC Experimental Setup

- **Step 4:** Developing the chromatograms
 - Allow the solvent to rise until it almost reaches the top of the plate.
 - Remove the plate from the chamber and mark the position of the solvent front
 - If the sample spots are visible, mark their positions.
- **Step 5:** Identify the spots and interpret the data.

Visualizing Colorless Compounds

*What if the compounds being separated are colorless? How are the spots visualized?

- Two ways to get around this problem:
 - A) Use fluorescenceB) Use chemical methods

Final Chromatogram

М

Using Fluorescence to Visualize Spots

- Substance which can fluoresce under UV light is added to stationary phase.
 - So, when the TLC plate is exposed to UV light, the plate will glow.
 - On the final chromatogram, will be masked at spots are located.
 - Examples: zinc sulfide

Visualizing Spots Chemically

 In some cases it may be possible to visualize the spots by reacting them with something that produces a colored product.

Iodine Crystals:

- The dried chromatogram is placed into a closed container containing iodine crystals.
- The iodine vapor either:
 - Reacts with the spots
 - Sticks more to the spots than it does to the rest of the chromatogram

Visualizing Spots Chemically

- Ninhydrin:
 - The dried chromatogram is sprayed with a ninhydrin solution.
 - Reacts with amino colored product.
 - mainly brown or purple
- Rhodamine B:
 - Visualization of lipids
- Aniline phthalate:
 - Visualization of carbohydrates

M

Before

acids to produce a

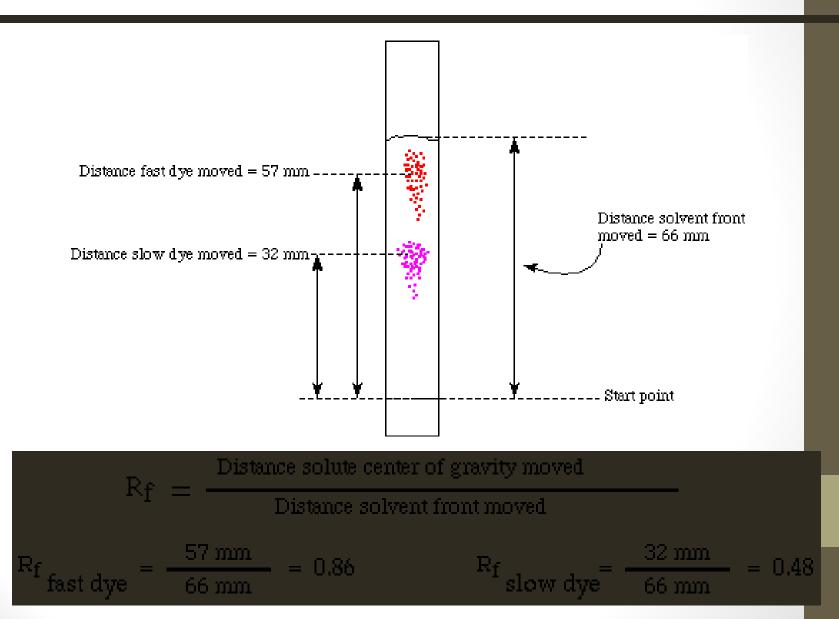
Interpreting the Results

Relative mobility: R_f

 $R_{f} = \frac{\text{Distance traveled by the compound}}{\text{Distance traveled by the solvent}}$

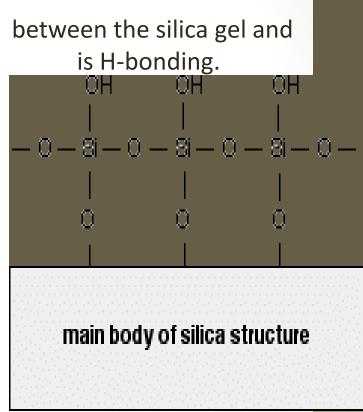
- The larger the R_f value, the farther the compound traveled up the plate.
- An R_f value is a physical property that can be used for identification purposes.
 - But it does depended on the conditions under which measured.

it is


Interpreting the Results

- R_f values are reported as relative values since they can be affected by:
 - the adsorbent used
 - the solvent system used
 - Temperature
 - the thickness of the adsorbent layer
 - the amount of sample material spotted
- It can be difficult to keep all of these variables constant from experiment to experiment.

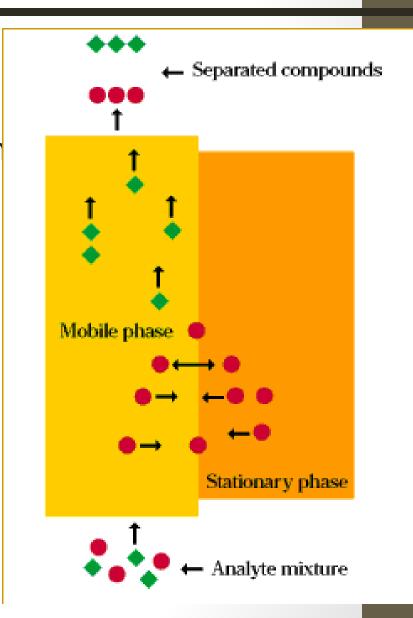
Interpreting the Results


- If two substances have the same R_f value they may or may not be the same compound.
- If two substances have different R_f values they are definitely not the same compound.

Sample R_f Calculation

How does TLC work??

- The surface of the silica (or alumina) gel has free hydroxyl groups which makes it very polar.
 - The primary interactions the molecules of the sample
 - The silica gel may act as:
 - H-bond donor
 - OR
 - H-bond acceptor



How does TLC work??

- This bonding between the sample molecules and the silica gel is also known as adsorption.

How Does TLC Work?

- It's a combination of which detern slow a compound will move TLC plate:
 - Adsorbent-sample interactions
 - Solvent-sample interactions
 - Intramolecular interactions within the sample

TLC Applications

- Can be used to determine the number of components in a mixture.
- Can be used to identify the presence of specific compounds/ unknown compounds.
- Can be used to monitor the progress of a reaction.
 - Will show if any reactant has disappeared, if any product has appeared, and how many products are present.
 - Often used to monitor organic reactions.

TLC Applications

- Used to determine which conditions are ideal to use in column chromatography.
 - Ex: which solvent system to use
 - Quick, fast, and inexpensive
- It is also used to monitor column chromatography.
- Used to quantify the amount of a component present .
 - Area of the spot
 - Spot extraction, then measure the amount